Research on the neural basis of conscious perception has almost exclusively shown that becoming aware of a stimulus leads to increased neural responses. By designing a novel form of perceptual filling-in (PFI) overlaid with a dynamic texture display, we frequency-tagged multiple disappearing targets as well as their surroundings. We show that in a PFI paradigm the disappearance of a stimulus and subjective invisibility are associated with increases in neural activity, as measured with steady-state visually evoked potentials (SSVEP), in electroencephalography (EEG). We also find that this increase correlates with alpha-band activity, a well-established neural measure of attention. These findings cast doubt on the direct relationship previously reported between the strength of neural activity and conscious perception, at least when measured with current tools, such as the SSVEP. Instead we conclude that SSVEP strength more closely measures changes in attention.
Share your feedback+ Open annotations. The current annotation count on this page is being calculated.
Article and author information
Author details
Matthew J Davidson
Experimental Psychology, Oxford University, Oxford, Australia
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Ethics approval was obtained from the Monash University Human Research Ethics Committee (MUHREC #CF12/2542 - 2012001375).Students at Monash University, provided written informed consent prior to taking part
Reviewing Editor
Valentin Wyart, école normale supérieure, PSL University, INSERM, France
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
712
Page views
89
Downloads
0
Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
A two-part list of links to download the article, or parts of the article, in various formats.
Goal-directed behaviors are essential for normal function and significantly impaired in neuropsychiatric disorders. Despite extensive associations between genetic mutations and these disorders, the molecular contributions to goal-directed dysfunction remain unclear. We examined mice with constitutive and brain region-specific mutations in Neurexin1α, a neuropsychiatric disease-associated synaptic molecule, in value-based choice paradigms. We found Neurexin1α knockouts exhibited reduced selection of beneficial outcomes and impaired avoidance of costlier options. Reinforcement modeling suggested that this was driven by deficits in updating and representation of value. Disruption of Neurexin1α within telencephalic excitatory projection neurons, but not thalamic neurons, recapitulated choice abnormalities of global Neurexin1α knockouts. Furthermore, this selective forebrain excitatory knockout of Neurexin1α perturbed value-modulated neural signals within striatum, a central node in feedback-based reinforcement learning. By relating deficits in value-based decision-making to region-specific Nrxn1α disruption and changes in value-modulated neural activity, we reveal potential neural substrates for the pathophysiology of neuropsychiatric disease-associated cognitive dysfunction.
The prefrontal cortex (PFC)'s functions are thought to include working memory, as its activity can reflect information that must be temporarily maintained to realize the current goal. We designed a flexible spatial working memory task that required rats to navigate—after distractions and a delay—to multiple possible goal locations from different starting points and via multiple routes. This made the current goal location the key variable to remember, instead of a particular direction or route to the goal. However, across a broad population of PFC neurons, we found no evidence of current-goal-specific memory in any previously reported form—i.e. differences in the rate, sequence, phase or covariance of firing. This suggests such patterns do not hold working memory in the PFC when information must be employed flexibly. Instead, the PFC grouped locations representing behaviorally equivalent task features together, consistent with a role in encoding long-term knowledge of task structure.
Predictions based on learned statistical regularities in the visual world have been shown to facilitate attention and goal-directed behavior by sharpening the sensory representation of goal-relevant stimuli in advance. Yet, how the brain learns to ignore predictable goal-irrelevant or distracting information is unclear. Here, we used EEG and a visual search task in which the predictability of a distractor’s location and/or spatial frequency was manipulated to determine how spatial and feature distractor expectations are neurally implemented and reduce distractor interference. We find that expected distractor features could not only be decoded pre-stimulus, but their representation differed from the representation of that same feature when part of the target. Spatial distractor expectations did not induce changes in preparatory neural activity, but a strongly reduced Pd, an ERP index of inhibition. These results demonstrate that neural effects of statistical learning critically depend on the task relevance and dimension (spatial, feature) of predictions.