Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.
Share your feedback+ Open annotations. The current annotation count on this page is being calculated.
Article and author information
Author details
Dennis Segebarth
Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
Deutsche Forschungsgemeinschaft (ID 44541416 - TRR58,A10)
Robert Blum
Deutsche Forschungsgemeinschaft (ID 44541416 - TRR58,A03)
Hans-Christian Pape
Deutsche Forschungsgemeinschaft (ID 44541416 - TRR58,B08)
Maren D Lange
Graduate School of Life Sciences Wuerzburg (fellowship)
Rohini Gupta
Manju Sasi
Austrian Science Fund (P29952 & P25851)
Ramon O Tasan
Austrian Science Fund (I2433-B26,DKW-1206,SFB F4410)
Nicolas Singewald
Interdisziplinaeres Zentrum fuer Klinische Zusammenarbeit Wuerzburg (N-320)
Christina Lillesaar
Deutsche Forschungsgemeinschaft (ID 424778381)
Robert Blum
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All effort was taken to minimize the number of animals used and their suffering.Lab-Wue1: All experiments with C57BL/6J wildtype mice were in accordance with the Guidelines set by the European Union and approved by our institutional Animal Care, the Utilization Committee and the Regierung von Unterfranken, Würzburg, Germany (License number: 55.2-2531.01-95/13). C57BL/6J wildtype mice were bred in the animal facility of the Institute of Clinical Neurobiology, University Hospital of Würzburg, Germany.Lab Mue: Male All animal experiments with male C57Bl/6J mice (Charles River, Sulzfeld, Germany) were carried out in accordance with European regulations on animal experimentation and protocols were approved by the local authorities (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen).Lab-Inns1: Experiments were performed in adult, male C57Bl/6NCrl mice (Charles River, Sulzfeld, Germany). They were bred in the Department of Pharmacology at the Medical University Innsbruck, Austria. All procedures involving animals and animal care were conducted in accordance with international laws and policies (Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes; Guide for the Care and Use of Laboratory Animals, U.S. National Research Council, 2011) and were approved by the Austrian Ministry of Science.Lab-Inns2: Male 129S1/SvImJ (S1) mice (Charles River, Sulzfeld, Germany) were used for experimentation. The Austrian Animal Experimentation Ethics Board (Bundesministerium für Wissenschaft Forschung und Wirtschaft, Kommission für Tierversuchsangelegenheiten) approved all experimental procedures.
Reviewing Editor
Scott E Fraser, University of Southern California, United States
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
1,258
Page views
196
Downloads
0
Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
A two-part list of links to download the article, or parts of the article, in various formats.
Older age is a strong shared risk factor for many chronic diseases and there is increasing interest in identifying aging biomarkers. Here a proteomic analysis of 1301 plasma proteins was conducted in 997 individuals between 21 and 102 years of age. We identified 651 proteins associated with age (506 over-represented, 145 underrepresented with age) was identified. Mediation analysis suggested a role for partial cis-epigenetic control of protein expression with age. Of the age-associated proteins, 33.5% and 45.3%, were associated with mortality and multimorbidity, respectively. There was enrichment of proteins associated with inflammation and extracellular matrix as well as senescence-associated secretory proteins. A 76-protein proteomic age signature predicted accumulation of chronic diseases and all-cause mortality. These data support the premise of proteomic biomarkers to monitor aging trajectories and to identify individuals at higher risk for disease to be targeted for in depth diagnostic procedures and early interventions.
While multicompartment models have long been used to study the biophysics of neurons, it is still challenging to infer the parameters of such models from data including uncertainty estimates. Here, we performed Bayesian inference for the parameters of detailed neuron models of a photoreceptor and an OFF- and an ON-cone bipolar cell from the mouse retina based on two-photon imaging data. We obtained multivariate posterior distributions specifying plausible parameter ranges consistent with the data and allowing to identify parameters poorly constrained by the data. To demonstrate the potential of such mechanistic data-driven neuron models, we created a simulation environment for external electrical stimulation of the retina and optimized stimulus waveforms to target OFF- and ON-cone bipolar cells, a current major problem of retinal neuroprosthetics.
Signaling networks are spatiotemporally organized to sense diverse inputs, process information, and carry out specific cellular tasks. In β cells, Ca2+, cyclic adenosine monophosphate (cAMP), and Protein Kinase A (PKA) exist in an oscillatory circuit characterized by a high degree of feedback. Here, we describe a mode of regulation within this circuit involving a spatial dependence of the relative phase between cAMP, PKA, and Ca2+. We show that in mouse MIN6 β cells, nanodomain clustering of Ca2+-sensitive adenylyl cyclases (ACs) drives oscillations of local cAMP levels to be precisely in-phase with Ca2+ oscillations, whereas Ca2+-sensitive phosphodiesterases maintain out-of-phase oscillations outside of the nanodomain. Disruption of this precise phase relationship perturbs Ca2+ oscillations, suggesting the relative phase within an oscillatory circuit can encode specific functional information. This work unveils a novel mechanism of cAMP compartmentation utilized for localized tuning of an oscillatory circuit and has broad implications for the spatiotemporal regulation of signaling networks.