1. Structural Biology and Molecular Biophysics
Download icon

Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters

  1. Xiaoyu Wang
  2. Olga Boudker  Is a corresponding author
  1. Weill Cornell Medicine, United States
Research Article
  • Cited 0
  • Views 646
  • Annotations
Cite this article as: eLife 2020;9:e58417 doi: 10.7554/eLife.58417

Abstract

Glutamate transporters are essential players in glutamatergic neurotransmission in the brain, where they maintain extracellular glutamate below cytotoxic levels and allow for rounds of transmission. The structural bases of their function are well established, particularly within a model archaeal homologue, sodium and aspartate symporter GltPh. However, the mechanism of gating on the cytoplasmic side of the membrane remains ambiguous. We report Cryo-EM structures of GltPh reconstituted into nanodiscs, including those structurally constrained in the cytoplasm-facing state and either apo, bound to sodium ions only, substrate, or blockers. The structures show that both substrate translocation and release involve movements of the bulky transport domain through the lipid bilayer. They further reveal a novel mode of inhibitor binding and show how solutes release is coupled to protein conformational changes. Finally, we describe how domain movements are associated with the displacement of bound lipids and significant membrane deformations, highlighting the potential regulatory role of the bilayer.

Article and author information

Author details

  1. Xiaoyu Wang

    Physiology and Biophysics, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8745-8238
  2. Olga Boudker

    Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
    For correspondence
    olb2003@med.cornell.edu
    Competing interests
    Olga Boudker, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6965-0851

Funding

National Institutes of Health (R37NS085318)

  • Olga Boudker

National Institutes of Health (R01NS064357)

  • Olga Boudker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lucy R Forrest, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States

Publication history

  1. Received: April 30, 2020
  2. Accepted: November 5, 2020
  3. Accepted Manuscript published: November 6, 2020 (version 1)

Copyright

? 2020, Wang & Boudker

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 646
    Page views
  • 158
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Ksenia Finogenova et al.
    Research Article

    Repression of genes by Polycomb requires that PRC2 modifies their chromatin by trimethylating lysine 27 on histone H3 (H3K27me3). At transcriptionally active genes, di- and trimethylated H3K36 inhibit PRC2. Here, the cryo-EM structure of PRC2 on dinucleosomes reveals how binding of its catalytic subunit EZH2 to nucleosomal DNA orients the H3 N-terminus via an extended network of interactions to place H3K27 into the active site. Unmodified H3K36 occupies a critical position in the EZH2-DNA interface. Mutation of H3K36 to arginine or alanine inhibits H3K27 methylation by PRC2 on nucleosomes in vitro. Accordingly, Drosophila H3K36A and H3K36R mutants show reduced levels of H3K27me3 and defective Polycomb repression of HOX genes. The relay of interactions between EZH2, the nucleosomal DNA and the H3 N-terminus therefore creates the geometry that permits allosteric inhibition of PRC2 by methylated H3K36 in transcriptionally active chromatin.

    1. Structural Biology and Molecular Biophysics
    Andrés López-Perrote et al.
    Research Article

    Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that degrades aberrant mRNAs and also regulates the expression of a wide range of physiological transcripts. RUVBL1 and RUVBL2 AAA-ATPases form an hetero-hexameric ring that is part of several macromolecular complexes such as INO80, SWR1 and R2TP. Interestingly, RUVBL1-RUVBL2 ATPase activity is required for NMD activation by an unknown mechanism. Here, we show that DHX34, an RNA helicase regulating NMD initiation, directly interacts with RUVBL1-RUVBL2 in vitro and in cells. Cryo-EM reveals that DHX34 induces extensive changes in the N-termini of every RUVBL2 subunit in the complex, stabilizing a conformation that does not bind nucleotide and thereby down-regulates ATP hydrolysis of the complex. Using ATPase-deficient mutants, we find that DHX34 acts exclusively on the RUVBL2 subunits. We propose a model, where DHX34 acts to couple RUVBL1-RUVBL2 ATPase activity to the assembly of factors required to initiate the NMD response.